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A linear theory for steady motions in a rotating stratified fluid is presented, valid 
under the assumption that 8 < E ,  where E and E are respectively the Rossby and 
Ekman numbers. The fact that the stable stratification inhibits vertical motions 
has important consequences and many features of the dynamics of homogeneous 
rotating fluids are no longer present. For instance, in addition to the absence of 
the Taylor-Proudman constraint, it is found that Ekman layer suction no longer 
controls the interior dynamics. In  fact, the Ekman layers themselves are fre- 
quently absent. Furthermore, the vertical Stewartson boundary layers are 
replaced by a new kind of boundary layer whose structure is characteristic of 
rotating stratified fluids. The interior dynamics are found to be controlled by 
dissipative processes. 

1. Introduction 
The following three features, which give the theory of homogeneous rotating 

fluids its distinctive character, are found to be essential for an understanding of 
a wide variety of phenomena. 

The first feature is the Taylor-Proudman (1917) theorem, which is valid for a 
homogeneous fluid in which the viscous and inertial forces are small compared to 
the Coriolis force. It states that the velocity does not vary in the direction of S2, 
where 9 is the rotation vector. It also implies that very slight extensions of fluid 
columns parallel to S2 can induce appreciable vorticity throughout the fluid. 

The second important feature is that the extension of fluid columns in the 
fluid's inviscid interior can be produced by the suction of fluid into thin viscous 
boundary layers (Ekman layers) existing along surfaces which are not parallel 
to 9. In  fact, this boundary-layer suction provides a dynamical mechanism 
whereby the viscous boundary layers can transmit boundary information into 
the fluid by vortex tube stretching. As a result, the Ekman layers can strongly 
control the inviscid, interior motion, since their effects are inertial rather than 
diffusive in character. The spin-up problem discussed by Greenspan & Howard 
(1963) and Greenspan (1964, 1965) illustrates dramatically this boundary-layer 
control. 

Thirdly, the circulations produced by the Ekman layer suction must frequently 
be closed by boundary layers parallel to 9 which were first discussed by Stewart- 
son (1957). These boundary layers have a double structure and can either be 
free, or attached to a rigid wall which is parallel to the rotation vector. 
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In the present paper we propose to examine how these features are modified 
by stratification. For the sake of simplicity, we shall restrict our attention to 
steady motions and to the case in which Q and g are aligned, where g is the 
gravitational acceleration. Furthermore, we shall only consider cylindrical 
boundaries whose horizontal cross-sections are either a circle, or an annular 
region bounded by two concentric circles. However, most of our results will be 
valid for more general container configurations. 

The plan to be followed is this: we shall fist formulate ( 5  2) a general class of 
boundary-value problems for either thermally or mechanically driven flows which 
can be regarded as small perturbations away from a state of rigid rotation and 
linear vertical stratification. Making a perturbation expansion in the Ekman 
number, we shall then examine the fluid’s interior (0 3) in order to derive interior 
equations. From an investigation of the horizontal and vertical boundary layers 
($54 and 5) for a variety of boundary conditions, we shall then deduce the 
boundary conditions which the interior Jields must satisfy. We shall finally be 
able to formulate simpler boundary-value problems for the interior fields ( 5  6). 

In  addition to the absence of the Taylor-Proudman constraint, we shall show 
that under certain conditions the mechanism of vortex tube stretching by 
Ekman layer suction is no longer allowed. In  fact, the Ekman layers will either 
turn out to be absent to  lowest order, or to play a purely passive role in the 
dynamics. Furthermore, a new kind of vertical boundary layer appears, replacing 
the Stewartson boundary layers observed in homogeneous fluid. All these drastic 
changes in behaviour of the fluid motion are intimately connected with the 
ability of the imposed stable stratification to inhibit vertical motions. 

2. Formulation 
The equations governing the steady motions of an incompressible, viscous, 

heat-conducting fluid, written in a co-ordinate frame rotating with angular 
velocity CI about the vertical are: 

(?* ) 1 

P 
q . ~ q + 2 & x q = - - ~ p - - g $ + ~  -1kxrI2 +uV2q, 

v.q = 0, 

P = POP - 4T- TO)l* 

q.VT = KPT, 

The notations are standard, viz. q, p ,  p and T are respectively the velocity, 
pressure, density and temperature of the fluid at a point r; v and K are the 
(constant) kinematic viscosity and thermal conductivity, E is a unit vertical 
vector. We have explicitly assumed that it is permissible to use a linear p - T 
relationship as the equation of state, in which a is the coefficient of thermal 
expansion and po  and To constant reference values of density and temperature. t 

t In this study thermal effects are considered to be the stratification agency. Only minor 
notational changes are required if some other property, say salinity, effects the stratification. 
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In  the absence of motions relative to the rotating frame, the conditions of 
static balance imply that: 

a2 

29 
P = P S  = Poo (1 + p  (z -  - IE x rp)) , 

where p is an arbitrary function. In  the present study we shall restrict our 
attention to those cases for which the parameter WL/g is sufficiently small so 
that p may be considered as a function of x only. Moreover, if we assume that p is 
a linear function of z, then the static temperature is also a solution of the heat 
equation. 

Let us introduce the following dimensionless variables, denoted by asterisks : 

9 = eQLq*, p = - g  ps(z')dz'+En2L2p,p*, 1' 
where E ,  which is a measure of the departure from a state of rigid rotation and 
linear vertical stratification, is the Rossby number. Assuming that E ,  Q2LIg and p 
are all less than O(E) ,  where E = u/BL2 is the Ekman number, and dropping the 
asterisks, the dimensionless equation of motion correct to O(E) can be written 
thus : 

2 E ~ q  = -Vp+TL+EVQ, (2.1) 

v.q = 0, (2.2) 

uf3L.q = EV2T. (2.3) 

The parameter 8 = -gp,/Q2L is a measure of the stratification and is assumed 
to be positive and of order one. The Prandtl number u = U / K  is also considered 
to be of O( 1). 

The fluid is contained within a cylindrical region bounded by two horizontal 
planes at z = 0 and x = 1, and either one or two vertical cylinders of radius 
r = rl and r = r2 such that rl > r2 0. On the horizontal boundaries, the velocity 
of the fluid must equal the prescribed boundary velocities, i.e. 

q = qB(r,8) on z = 0, q = q,(r,8) on z = 1. (2.4) 

q = qo(z,8) at r = r17 q = q,(z78) at r = r2. (2.5) 

Similarly, on the vertical boundaries : 

Finally, either the temperature, or the heat flux, or a combination of both is also 

( 2 . 6 ~ )  
specified, viz. a,T+b,T, = O,(r,O) on z = 0, 

a,T+b,T, = OT(r,8) on x = 1, (2.6b) 

a,T+b,T, = @,(O,z) on r = rl, ( 2 . 6 ~ )  

a,T + b,T, = OI(B, z) on r = r2, (2.6d) 

where ( r ,  8, z)  are the usual cylindrical co-ordinates. 
It is important to note that unless r2 = 0, the fluid region is not simply- 

connected. Of course when r2 = 0, all the boundary conditions at  the 'inner' 
1-2 



4 V .  Barcilon and J .  Pedlosky 

vertical wall should be disregarded. (2.1)-( 2.6) constitute a well-posed boundary- 
value problem for a large class of either thermally or mechanically driven flows, 
which we propose to consider for the case of small Ekman numbers. 

3. The interior equations 

the dependent variables in an asymptotic series in powers of E t ,  e.g. 
In order to find the equations of motion valid in the fluid’s interior, we expand 

q = q ( O )  + E*q(l) + Eq(2) + . . . . (3.1) 

Note that the assumed series for the interior variables proceeds in powers of E* 
even though the differential equations contain only E. NevertheIess, this form 
of the expansion is assumed because experience indicates the possibility of 
boundary-layer corrections to the interior flow which are of O(E*) (Greenspan 
1965). 

Substitution of this expansion in (2.1)-(2.3) yields for the O(1) equations: 

To O( l) ,  the flow is geostrophic and hydrostatic. The vertical velocity is so sup- 
pressed by the stratification that an examination of (2.3) shows that it must be 
of O(E) .  The interior motion is therefore constrained by the strati$cation to be purely 
horizontal to O(E) .  This constitutes a crucial difference between the stratified 
and homogeneous cases, since in the latter case the interior vertical velocity is 
usually of O(E*) rather than of O(E) .  As we shall presently see, this fact will have 
important consequences for the Ekman boundary layers. 

The O(E4) equations are: 

(3.6) 

(3-7) 

1 
2f x q ( 1 )  = - Vp(1), 

T(1) = f . Vp(1), 

l .q(l) = 0, 

V . q ( l )  = 0. 

Therefore the interior O( 1)  and O(E4) dynamics are identical. Elimination of the 
pressure between (3.2) and (3.3) yields the familiar ‘thermal wind’ relation, viz. 

2(&. V )  q!$’ = f x VT(O), 

where q, = q-  ( f .q)&.  To this order, of course, q9 = q(O).  The variation of the 
O( 1) (and similarly O(EB)) interior veIocity in a direction parallel to the rotation 
axis is produced by horizontal density gradients. Thus, as is well known, vertical 
shears of the horizontal velocity are now allowed and the fundamental constraint 
of the Taylor-Proudman theorem is broken. As a result, the fluid no longer need 
behave as a set of columns. It is convenient to rewrite (3.2) as follows: 

(3.8) q(0’ = 12 x Vp(0). 
2 
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Since q ( 0 )  as expressed in (3.8) satisfies (3.4) and (3.5) identically, (3.2)-(3.5) are 
degenerate and we must consider the O(E)  equations in order to derive an 
equation for ~ ( 0 ) .  Had we not assumed that e < E ,  we would have had to consider 
the departures from the geostrophic and hydrostatic balance due to the inertial 
and/or the diffusion terms. However, since e < E the inertial terms can be 
disregarded altogether. 

The O(E)  interior equations are: 

(3.9) 
(3.10) 

(3.11) 

The O(E) vertical velocity depends for its existence on the diffusion of tempera- 
ture in the fluid interior. The equation governing the O( 1) fields can be obtained 
by first forming the vertical component of the vorticity equation, viz. 

(3.12) 

where w = f . q  and 6 = E .  (0 x 4 ) .  Then using the heat equation (3.10) to 

(3.13) 
eliminate w ( ~ ) ,  we get 

(3.12) states that the production of vorticity by vortex tube stretching in the 
direction of the rotation axis by means of the O(E)  vertical velocity must be 
balanced in the interior by the viscous dissipation of the 0 ( 1 )  vorticity. Since 
T(O) and q(0) can easily be deduced from p(O), it  is preferable to rewrite (3.13) in 

(3.13') 
terms of p@),  viz. 

where 04 is the two-dimensional horizontal Laplacian operator. In  the interior 
the O(1) motion is therefore completely controlled by  the small diflusion present in 
the O(1) motion. 

In  order to formulate an 'interior' boundary-value problem, it is necessary 
to specify boundary conditions for the interior fields. This can only be done by 
a consideration of the various boundary-layer corrections to the interior fields 
which are needed to satisfy the boundary conditions (2.4)-(2.6). 

4. The Ekman boundary layers 
Viscous boundary layers exist in regions of thickness E4 near the surfaces 

z = 0 and z = 1. In  the region near z = 0, for example, we represent the dynamicd 
variables in the following series: 

q = q(o)(r, 8,  Z )  + E&q(I)(r, 8, z )  + Eqc2)(r, 8, X )  + . .. 

p = p(O)(r, 8,  Z) + E&p(l)(r, 8, z )  + Ep(2)(r, 8, z )  + . . . 

T = T@)(r, 8, z )  + E*T(I)(r, 8, z )  + E!F2)(r, 8, z )  + . .. 

+ ?$O)(r, 8 , ~ )  + E4pc1)(r, 8 , ~ )  + . . ., 

+ E@l)(r, 8 , ~ )  + . . . , 

+ 5?(O)(r, 8,q) + E%%)(r, 8 , ~ )  + . . .: 
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where the tilde variables are boundary-layer corrections to the interior fields and 
are functions of the stretched variable 

7 = E-42. 

Note that the boundary-layer correction to the pressure is of O(E4). All the tilde 
variables must, of course, vanish as 7 -+ 00. 

If (4.1) is substituted in (2.1)-(2.3), we obtain the boundary-layer equations for 
the O( 1) variables: 

From (4.3), (4.4) and (4.5) we immediately deduce that 

(4.4) 

(4.5) 

Therefore, the horizontal boundary layers are indeed the same Ekman layers as are 
present in a homogeneousfluid. This is, of course, due to the fact that the Ekman- 
layer thickness is small compared to the stratification height. The solution of 
(4.2) subject to the conditions (2.4) is 

4'0) = - (qn - 9,) e-7 cos 7 + f x (qa- 9,) e-7 sin 7, (4.7) 

where the interior velocity q(O) is evaluated at z = 0. An examination of the 
O(E4) boundary-layer equations shows that 

Since $(I) + w(l) is zero on z = 0, and since w(l) is identically zero because of the 
influence of the stratification on the interior vertical velocity, we deduce from 

i W ( r ,  8 , O )  = fr{QO)(r, 8 , O )  - CB) = 0, (4.9) that 

or, expressing [(O) in terms of p(0) 

1V2 2 1P (0) = C, on 2 = 0. (4.10) 

Thus, because of the strati$cation, the suction of fluid out of (or into) the Ekman 
boundary layers is zero to O(E*). The stretching of Jluid columns by a n  O(EB) 
suction, which constitutes such a n  important mechanism in the theory of homo- 
geneous rotating Jluids, is absent. The  Ekman layer plays, at most, a passive role in 
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the 0(1 )  dynamics. Note that if the prescribed velocity at  z = 0 is irrotational 
(t& = 0 ) ,  the interior velocity must also be irrotational on the plane z = 0, i.e. 

V?p(O) = 0. 

Using (4.10), (4.9) and (2.3) it  can easily be shown that T(l)is zero, so that the 
interior temperature must satisfy the boundary condition (2.6a) by itself, i.e. 

+Eg~(c”(E~,8,z)+EU(2)(,u78,X) + ..., 
v = v(O)(r, 8, Z) + EW)(r, 8, Z) + . . . 

w = Ew@)(r, 8, Z) + . . . + ~ ( o ) ( p ,  8, Z) + E+w(l)(p, 8, Z) + . . . , 
+ E&P)(,u, 8, z )  + hV2)(,u, 8, z )  + . . . , 

p = p@@, 8, z )  + E3p(1)(~, 8, z )  + . .. 

T = T(O)(r, 8, z )  + E*T(l)(r, 8, z )  + . . . 
+ m p y p ,  8, 2) + E ~ P ) ( ~ ,  o , z )  + . . . , 

+ P)(,u, 8, z)  + E S W ( ~ ,  8, z )  + . . . .) 

(4.11) 

(5.1) 

The analysis of the Ekman layer on z = 1 proceeds in a similar manner, 
yielding the following boundary condition for the O( 1) interior flow : 

gV?p(O) = CT on z = 1, (4.12) 

(4.13) 

In order to complete our formulation of the interior boundary-value problem, 
we now turn to a consideration of the vertical boundary layers. 



(5 .2 )  

(5.3) 

(5.4) 

15.5) 

(5 .6 )  

Since jP) vanishes at infinity, ( 5 . 2 )  implies that jP)is identically zero. Thus, once 
W(0) and and$) can be found by means of (5 .6 )  and (5 .3 ) .  
The primary variables in this layer are W(O) and P(O), and it is interesting to note 
that the boundary-layer equations in these variables have the same structure as 
the Ekman-layer equations for do) and G ( O )  in the neighbourhood of z = 0 , l .  
Because w(0) is identically zero, E(O) must vanish on p = 0; consequently, we 

(5.7) 
deduce that 

( 5 . 8 )  

(5 .9 )  

are determined, 

W(O) = C(8, x )  e-kp sin kp, 

F(0) = 2k2C(8, z )  e-kP cos k p ,  

u(1) = - - (acpz) e-kp sin (kp + in-), - 1 

- 1 
v(l) = ~ (aC/az) e-kfi cos (kp + in-), 

k 4 

7~3 J 2  
(5 .10 )  

where k = (d)*/ J2 ,  and C(0, x )  is yet to be determined. 

the boundary conditions (2 .5)  by themselves, viz. 
It is clear that the interior radial and circumferential velocities must satisfy 

ap(O)/aO = o on Y = rl ,  

ap(o)/ar = 2V, on r = rl. 

The thermal boundary condition ( 2 . 6 ~ )  may now be written thus: 

(5 .11 )  

(5 .12 )  

(5 .13‘ )  

If the region is not simply-connected (i.e. r2  + 0 ) ,  a similar boundary layer 
exists on the inner wall, yielding the following boundary -layer corrections : 

W(0) = D(8, x )  e-kh sin kh, 

F(O) = 2k2D(0,  x )  e-kh cos kh, 

(5 .14 )  

(5.15) 

(5 .16 )  
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h = E-+(r - r2).  

9 

where 

The boundary conditions on r = r2 are analogous to (5.11)-(5.13). 

conditions. 
Further discussion now depends on the particular type of thermal boundary 

6. Conditions on the interior flow 
6.1. Simply connected region 

Let us first consider the simpler case in which the region is simply connected, 
i.e. r2  = 0. Then the only vertical boundary layer occurs on r = rl. 

We have already seen that on z = 0 and x = 1, the O(1) pressure must satisfy 

l V 2  @ I =  cB on z =  0,  (6.1 a )  the relations: 
2 113 

+V;p(O) = cT on z = 1. (6.1 b )  

In addition, since the O(1) pressure is the interior pressure, p(O) must be con- 
tinuous at the rims of the container. This, together with (5.11), implies that on 
z = 0 and x = 1, the above two-dimensional Poisson equations must be solved 
subject to the condition that p(O) be a constant on the circular boundary of the 
planar region. Since the regions are simply connected, the only solutions of (6.1), 
written in terms of the velocity, are 

Thus in a simply connected region the interior O(1) velocities must match the 
prescribed boundary velocity. To this order there is  no Ekman layer; this follows 
formally from (6.2) and (4.7). It is important to note that the interior problem is 
of sufficiently high order to be able to meet this condition. Thus, for a simply 
connected region, there is generally no Taylor-Proudman theorem, no Ekman 
layer suction and no Ekman-layer. 

Let us turn our attention to the side wall boundary layer. We shall consider 
separately the two cases where first, a condition is solely placed on the tempera- 
ture, or density (b, = 0), and secondly, where a condition is placed on the heat 

Putting b, equal to zero, andusing (5 .8 ) ,  the thermal boundary condition (5.13) 
flux (b, + 0). 

can be written thus 
f3p(O) 

2k2C(0, z )  a, = @,(O, z )  - a, __ on r = rl .  (6.3) az 

It is convenient to write both C(O, x )  and @(O, z)/a, as Fourier series, viz. 
m 

C(O,  x )  = ~,,(z) + 2 {cc,(~) cos ne + ~ ; ( z )  sin no>, (6.4) 

(6.5) 

n = l  
00 

@,(O, x)/a, = %(z) + C { Y ; ( z )  cos nO + Y ; ( x )  sin no]. 
n=l 

Using the continuity equation (5.6) and the fact that u(l) is geostrophic, we can 
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which simply states that the net vertical E* transport in the side wall boundary 
layer, across any horizontal plane is constant. Upon using (5.7) and (6.4), (6.6) 
implies that ac,laz = 0, 

i.e. C,, is a constant. In  a simply connected region this constant must obviously 
be zero, but this need not be the case for a multiply connected region. Averaging 
now (6.3) over 8, and using the condition (5.11), we deduce that 

a p y a z  = ~ ( ~ 1 ,  (6.8) 

which completes the specification of the interior boundary-value problem. In 
addition, we can also derive from (6.3) that 

2k2C;(2) = ,7%(~), ( 6 . 9 ~ ~ )  

2k2CS,(z) = ,7;(z). (6.9 b )  

Any lack of axial symmetry in the prescribed temperature is taken up com- 
pletely by the side-wall boundary layer, and the interior temperature (density) 
satisjies an axially symmetric condition on r = rl, viz. (6.8). The asymmetry in the 
prescribed temperature affects the fluid interior only in so far as it produces a 
flux of O(EQ) in the side-wall layer which must penetrate the interior. Thus, 
a cylinder heated on one side and cooled on the other would produce rising 
currents on the hot side, descending currents on the cool side and the circulation 
will be closed by an O(E*) interior motion. Finally, it  should be noted that, 
although Co = 0 insures that there is no &average flux in or out of the vertical 
layer, there exists the possibility that E(O) + 0 at z = 0 , l .  If this were indeed the 
case it would imply the existence of an O(E-4) azimuthal velocity within the 
narrow ‘corner’ regions (since there can be no O(E4) flux in or out of the Ekman 
layers). However, this O(E-*) corner-region correction to the azimuthal velocity 
which satisfies a homogeneous set of equations with homogeneous boundary 
conditions, is identically zero and consequently we must require that W(O) = 0 at 
z = 0 , l .  This requirement can be satisfied only if the prescribed temperature 
Oo(8, z )  is a constant for z = 0 , l .  More general heatings are outside the scope of 
this linear theory, since they would imply the existence of regions in which the 
inertial forces cannot be neglected. 

The case in which the thermal boundary condition along the vertical wall 
involves the heat flux (j.e. b, 9 0) can be treated as follows. From the first equa- 
tion in (5.13) and (5.8) it is clear that C(0 ,  z )  is identically zero. Therefore the first 
non-zero boundary-layer corrections are of lower order than for the case b, = 0, 
but still of the same form, viz. 

- 
w(I) = C(l)(O, z )  e-kp sin kp, 

T(l) = 2k2C(l)(0, z )  e - k p  cos kp, 
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together with (5.12), the thermal boundary Using the above expression for 
condition (5.13) can now be written thus 

Or, averaging this expression and recalling that p(O) is not a function of 0 on the 
boundary, we get 

21~~b, (C(~))  = (0,) -a, ap(O)/az - 2b, a(E)/az on r = rl .  (6.3') 

An additional relation between {C(l)) and p(O) can be obtained from the O(E) 
boundary condition for the radial velocity, or rather from its &average, viz. 

(,a) = -@ (2)) on r = rl. 

Using the expression for  given by the azimutha1 component of the momentum 
equation and the expression for iJ2) in terms of C(I), we get 

Eliminating (W)) between the above equation and (6.3') we deduce that 

which together with (5.12) constitute the appropriate boundary conditions for 
p(O). Note that if the wall is insulated and fixed in the rotating frame, i.e. if 
0, = a, = V, = 0, this last boundary condition becomes 

(6.8") 

The situation regarding the restrictions on 0, differs slightly from the one above, 
valid for the case b, = 0. In  particular, if the solution of the O(1)  interior 
boundary-value problem is not identically zero (i.e. if the horizontal boundary 
conditions and/or the dynamical vertical boundary conditions are inhomo- 
geneous), it is not necessary to restrict the form of 0,. This is due to the fact that 
the radial velocity in the Ekman layers can accommodate a 8-dependent flux. 
However, if the motion is solely due to 0, (i.e. if the interior O(1) temperature 
is identically zero) then by means of arguments analogous to those used above, 
one can show that W(l )  must vanish at z = 0 , l  and therefore that 0, must be a 
constant along the rims of the container.? 

6.2. Doubly connected region 

Let us now turn our attention to the more complicated case in which the region 
is doubly connected, i.e. r2 4 0. We shall see that the annular geometry gives the 
fluid motion an added degree of flexibility. 

t Both in this case and in the analogous one for b, = 0, the representation inside the 
vertical boundary layer is valid throughout the entire height of the container and, since there 
are no Ekman layers (of comparable order), ' corner regions' are absent. 
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Let us rewrite the general conditions forp(O) at z = 0 and x = 1, which stem from 

&Vfp(O) = CB on z = 0, (6.10 a )  

l V 2  2 1P (0) = C, on = 1. (6.lOb) 

From (5.11) and (5.18), it  follows that we must solve the Poisson equations (6.10) 
for p ( O )  subject to the conditions that 

ap(O)/80 = 0 on r = rl and r = r2. (6.11) 

However, because the horizontal boundaries are doubly connected, (6.10) and 
(6.11) do not specify a unique solution. To define the solution uniquely it is neces- 
sary to specify the circulation of the interior flow in the planes x = 0 and x = 1. 
If we define the functions $,(r, 0) and $T(r, 0) such that 

the suppression of the vertical velocity, viz. 

( 6 . 1 2 ~ ~ )  

(6.12b) 

then, the most general solution of (6.10) subject to (6.11) is 

p(O) = 2$B+ 2A,lnr+ K,  on x = 0;  (6.13a) 

p(O)= 2$,+2A~lnr+K, O n  2 = 1; (6.13b) 

where A, and AT are measures of the interior circulations on the planes z = 0 and 
x = 1. The corresponding velocities are: 

on 2 = 0; (6.14a) 

(6.14b) q ( O )  = q T + $ o  on z =  1. 

For a simply connected region A ,  and A, must be zero in order to prevent the 
velocity from being infinite at  r = 0. In  a multiply connected region this need not 
be the case, and i t  raises the possibility that the interior velocity does not match 
the boundary conditions, and consequently that O(1) Ekman layers exist. Of 
course, even in this case there is no Ekman-layer suction. 

In  order to determine whether A ,  and A, are non-zero let us first consider 
the case in which the thermal condition on at least one side wall involves the 
heat flux. For definiteness, let h, $; 0. Then, from (5.13) we deduce that 

A 

c(e,z) = 0. (6.15) 

This means that the net vertical flux in the outer side wall layers is at most of 
O(E) .  On the other hand the radial flux in the lower Ekman layer 

is, using (4.7) and (6.14a), - nA, Ei. 
From flux continuity we must therefore require that A, = 0, and similarly that 
A ,  = 0. Thus, even in this multiply connected region where an Ekman layer is 
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a priori possible, a detailed consideration of the side wall layer shows that, in 
fact, no Ekman layer exists if the thermal condition on either side wall involves 
the heat flux. The interior variables must therefore again satisfy all the prescribed 
conditions on z = 0 and z = 1, while the interior velocity must match the side 
velocity conditions. 

The final case to consider occurs when the region is doubly connected and 
neither inner nor outer wall has a thermal boundary condition involving the heat 
flux. In  this case b, = b,  = 0. Then, on the outer wall 

oI(o, z )  a p  
2kZD(8,2) = ~ -~ 

aI  a2 
( r  = r2).  

As before, we write 

(6.16a) 

(6.16 6 )  

m 

C(0, Z )  = Co + 2 (Ce,(z) cos no + C”,Z) sin no}, 

-- @J’, X I  - z0(z) + x { ~ ; ~ ( z )  cos no + Y E ~ ( ~ )  sin no>, 

( 6.17 a )  

( 6.1 8 a )  

n-1 

m 

a0 n=l  
and similarly 

W 

D(0, z )  = Do + 2 {D;(z) cos no + D:(z) sin no}, (6.17 b)  
n=l 

As previously, see (6.7), Co and Do are independent of z since the vertical boundary 
layers are, on the mean, non-divergent. Recalling that p(O) is independent of 0 
both on r = rl and r = r2, we can now deduce from (6.16) that 

C;& = (2k2aO)-lYgn, C; = (2k2a0)-1Y;n, (6.19a, b) 

0; = (2k2aI)-1F$n, 0; = (2k2aI)-lYFn (6.19c, d )  

and 
ap(0) 

a Z  

az 

-- - K O ( ~ )  - 2k2Co on r = rl ,  (6.20a) 

ay) = q o ( z )  - 2 ~ 7 2 ~ ~  on r = r2. (6.2Ob) 

Once again, the interior O( 1) temperature ‘sees’ only the axially symmetric portion 
of the prescribed side wall temperature, the remaining going into the production of 
vertical side wall layer velocities. 

(6.20) may be integrated to yield the pressure on the side walls, viz. 

q 0 ( z ’ )  dz‘ - 3k2C0z + KO, 

YI0( z ’ )  dz‘ - 2k2D0z + K,, 

(6.21 a )  

(6.21 b)  p(0)(r2, 8, z )  = s: and 

while the pressure on z = 0 and z = 1 is given by (6.13). In  order to complete the 
formulation of the interior boundary-value problem, we must evaluate A,, A,, 
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C,, Do and the K’s. The O(E8) net mass fluxes in the outer and inner side wall 
layers are 

Po = p 2m1 E3, Fx = DO - 2nr2 E8, (6.22a,b) 
2k 

while the radial fluxes in the top and bottom Ekman layers are 

From flux continuity we must require that 

rlk-lCo = -A,,  

r2k-lD0 = -AT, 
AT = -A,, 

from which we deduce that 

(6.24) 

(6.25) 

(6.26) 

co = - Dor2/rl = - kAB/T1. (6.27) 

An additional equation for the four flux measures C,, Do, AT and A,  is obtained 
from pressure-continuity requirements. Indeed, at the rims of the annular region 
we must have 

’p(’)(rl, 8,  1) = T o ( Z ’ )  dz’ - 2k2C0 + KO = 2@T(r1) + 2.4, In rl + KT, 

( 6 . 2 8 ~ )  
(6.28 b )  

(6.28 c) 

su’ 
p(o)(T1,8,0) = K O  = 2@B(r1) + 2 A ~ l n r ,  + KB, 

’p(’)(YZ, 8,o) = KI = 2 @ ~ ( r ~ )  + 2AB r2 4- KB, 

(6.28d) 

Eliminating the K’s in (6.28) and using (6.27), we obtain 

1 1  
$ [ { @ d r 1 )  - @T(r2)> - {@B(r l )  - @B(r2)>l - 4s - r I o ( Z ’ ) ) d z ’  

0 A ,  = 

(6.29) 

A special case of interest occurs when the boundaries are fixed. In  this case (6.29) 
reduces to 

Since Too and TIo are related to the axially symmetric part of the imposed side 
wall temperature conditions, (6.30) states that there will be a circumferential, 
interior circulation at the horizontal boundaries when the average of the tem- 
peratures of the inner and outer walls differ. Otherwise A ,  = AT = 0,  and there 
will be no net transport in the Ekman layer and, in fact, no Ekman layers. It is 
interesting to note that the existence of the cited circumferential circulation 
(and Ekman layers) depends on the average of the imposed temperature differ- 
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ences. The relation (6.30) can also be considered as a net overall thermal wind 
balance for the region; such a consideration rationalizes the importance of the 
difference of the average of the imposed temperature differences. Barcilon (1962), 
in an earlier investigation, found results which are consistent with this analysis 
in his detailed consideration of the heated annulus problem. 

In conclusion, we find that the stratification introduces important modifica- 
tions in the dynamics of rotating fluids. In particular, except in the case just 
referred to of an annular region with no heat flux constraints on the side walls, 
all stratified, low Rossby number, rotating fluids have no Ekman layers. Even 
in the above-mentioned case, certain conditions must be met if there are to be 
0(1) Ekman layers, namely (6.29). The interior flow is diffusive and, although 
geostrophic, the presence of interior dissipation leads to a mathematical problem 
of sufficiently high order to satisfy all the boundary conditions when, as is usually 
the case, the viscous boundary layers are absent. Finally, we should mention that 
the general results of the present paper, which is restricted to steady motions, are 
also valid for time-dependent flows, provided that the time scale of the motion 
is of O(E-lR-l), i.e. a diffusive time scale. 

7. Examples 
We include here two very simple examples which illustrate the fundamental 

notions of the earlier sections and further display the basic differences between 
the homogeneous and stratified fluids. Further examples will be discussed in 
a later paper. 

Example 1. Consider infinite horizontal disks rotating differentially. Let the 
disk at z = 0 be fixed in a system rotating with angular speed Q, while the upper 
disk a t  z = 1 rotates with speed Q(l + 8). The well-known solution for the 
homogeneous fluid consists of an Ekman layer on each plate merging into an 
interior flow which is a circumferential solid body rotation with angular velocity 
R( 1 + B E ) ,  i.e. the mean of the two disks. The solution for a stratified fluid is easy 
to find. We consider here the case where the upper and lower plates are insulated, 
i.e. 

Then it can be verified that the expression 

p(0) = y22, 

rz, which leads to v(0) = 

constitutes a solutiont of the interior equation (3.13’) and of the imposed 
boundary conditions on the temperature and velocity at z = 0 , l .  The circumfer- 
ential velocity is no longer independent of z in the interior but changes linearly 
from the velocity of the upper to that of the lower plate. Furthermore, Ekman 
layers are absent.$ The fluid interior no longer acts as a column but as a series of 

t Unless the z-variation of the temperature is specified, the solution to the above boundary- 
value problem is not unique. 

$ This result differs from that of Carrier (1965) who considered a similar example. He fin& 
that Ekman layers are present dong horizontal boundaries. However, his analysis differs in 
so far as the assumptions on the Froude and Prandtl numbers are concerned. 
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'fluid disks ', each slipping over its neighbour and transmitting the velocity 
applied by the differentially rotating disks by viscous stresses rather than vortex 
tube stretching due to Ekman-layer suction. 

Example 2. If the region is again contained between two rotating disks, which 
are, however, finite, the problem is slightly more complex. Let the region be 
bounded at r = rl by a circular cylinder which is non-conducting. Then, our 
analysis implies that there is neither Ekman layer nor vertical side wall layer. 
The solution of (3.13'), subject to the conditions 

ap(o)/ar = a2p(0)/az2 = 0 on z = 0, 

on z = 1, 

ap@)/ar = a[ra2p@)/~r2]/ar = 0 on r = rl, 

& ap(o)/ar - r = a2p@)/az2 = O 

sinh k,/r,z sinh k,l/r,z 
is + const., 

where 2; = 2(aS)-4 Ji(k,)  = 0, 

and A , = - &  4r2/ J ( k )  o n a 

kn 

In  the limit rl-+co, this solution approaches the solution of example 1. The 
fluid again behaves in a strikingly different manner than the homogeneous 
analogue. 
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